Conda Environments
Conda Environments
Conda provides an extensive interface to manage python virtual environments that provides additional functionality over venv
Creating an environment
In Windows, open the Anaconda prompt, in WSL2 / Linux any shell prompt once you have installed miniconda or Anaconda.
-
create the environment
conda create --name myenv
-
activate the environment
conda activate myenv
Configuring the environment for running Jupyter notebooks
-
install packages (example packages for data science experiments)
conda install pandas scikit-learn matplotlib jupyter jupyterlab sqlalchemy seaborn pip git nbconvert
-
you might want to install tools from a different update channel:
conda install -c conda-forge jupyter_contrib_nbextensions conda update conda conda update --all
Alternatively, you can install packages (and optionally pin versions) at the point you create the environment:
conda create --name myenv python=3.11 pandas scikit-learn matplotlib jupyter jupyterlab sqlalchemy seaborn pip git nbconvert openpyxl
Adding virtual python kernel
In most cases you will also want to add a virtual python kernel to run notebooks.